ALKIS-ATKIS modelling using ISO 19100 standards

Workshop “Standards in action” – Lisbon – 2001-03-07

Clemens Portele
interactive instruments GmbH
Trierer Straße 70-72, 53115 Bonn, Germany
📞 +49 228 9141073
✉️ portele@interactive-instruments.de
General Remarks

- Until 1999 ALKIS-ATKIS has been developed without using ISO draft standards.
- Main benefits by using ISO 19100 (expectations):
 - Reduction of software costs by using standard components (more off-the-shelf, less ALKIS-ATKIS-specific software).
 - Better integration into IT environments by following the IT mainstream developments (e.g. UML, XML).
 - Easier access to spatial information for users / customers by following internationally accepted practices.
 - Other spatial applications in Germany will be going to use the ISO 19100 standards in the same way they are used by ALKIS-ATKIS. ALKIS and ATKIS will form a basic layer of spatial information.
Covered Draft Standards

- ISO 19103 Conceptual schema language
- ISO 19107 Spatial schema
- ISO 19108 Temporal schema
- ISO 19109 Rules for application schema
- ISO 19110 Feature cataloguing methodology
- ISO 19112 Spatial referencing by geographic identifiers
- ISO 19113 Quality principles
- ISO 19115 Metadata
- ISO 19117 Portrayal
- ISO 19118 Encoding
Application Schema and Feature Cataloguing

- ISO 19103 Conceptual schema language
- ISO 19107 Spatial schema
- ISO 19108 Temporal schema
- ISO 19109 Rules for application schema
- ISO 19110 Feature cataloguing methodology
- ISO 19112 Spatial referencing by geographic identifiers
- ISO 19113 Quality principles
- ISO 19115 Metadata
- ISO 19117 Portrayal
- ISO 19118 Encoding
Rational Rose is used to model the UML application schemas of ALKIS and ATKIS in conformance with ISO 19103 and 19109.

(Simplified) structure of main packages.
Application Schema and Feature Cataloguing

ALKIS Application Schema

Some statistics:
21 Leaf Packages
241 Feature Types

2001-03-07 Workshop "Standards in action"
Feature Cataloguing has been extended for ALKIS-ATKIS usage to include additional information in the catalogue.

This is more or less equivalent to a leaf package in the Application Schema.

FC_FeatureType (from ISO 19110 Feature Cataloging)

AC_FeatureType
- wirdTypisiertDurch : AC_ObjektTypenBezeichnung
- erfassungskriterium : CharacterString
- konsistenzbedingung : CharacterString
- bildungsregel : CharacterString
- lebenszeitintervallbeschreibung : CharacterString

AC_Objektartengruppe
- definition : CharacterString
- kennung : CharacterString
- bezeichnung : CharacterString
• Relation between Feature Cataloguing and General Feature Model unclear.

• ALKIS-ATKIS approach: The Feature Catalogue is derived from the application schema. The application schema is the reference.

• As a result, consistency between the different ways to describe the application domain is enforced.
Spatial Schema

- ISO 19103 Conceptual schema language
- ISO 19107 Spatial schema
- ISO 19108 Temporal schema
- ISO 19109 Rules for application schema
- ISO 19110 Feature cataloguing methodology
- ISO 19112 Spatial referencing by geographic identifiers
- ISO 19113 Quality principles
- ISO 19115 Metadata
- ISO 19117 Portrayal
- ISO 19118 Encoding
Spatial Schema

• The Spatial Schema is a complex model with many options.
• Its usage must be restricted for ALKIS-ATKIS, otherwise standardisation goals are likely to be compromised (we do not expect that GIS vendors will implement the full model).
• Only the following spatial attribute types are allowed:
 – GM_Point, GM_Curve, GM_OrientableCurve, GM_PolyhedralSurface,
 – TS_Node, TS_DirectedEdge, TS_Face,
 – GM_CompositeCurve, GM_CompositeSurface,
 – GM_MultiPoint, GM_MultiCurve, GM_MultiSurface.
• Only the following types of curve segments are allowed:
 – GM_LineSegment, GM_LineString, GM_Arc (interpolation "CircularArc3Points"), GM_Circle, GM_CubicSpline.
Spatial Schema

• A spatial schema for ALKIS-ATKIS has been developed, offering four ways to express the spatial properties of features.
 – Topology (TS = Simple Topology from ISO 19107)
 – Shared Geometry (RF)
 – Independent Geometry (AU)
 – Presentation Geometry (AP)

• ALKIS-ATKIS feature types with spatial attributes must be derived from the supertypes defined in one of these packages.
Spatial Schema

<<Type>>
GM_Composite
(from Geometric complex)

<<Feature>>
TS_PointComponent
(from Simple Topology)

<<Feature>>
TS_CurveComponent
(from Simple Topology)

<<Feature>>
TS_SurfaceComponent
(from Simple Topology)

<<Type>>
GM_Complex
(from Geometric complex)

<<Feature>>
TS_Feature
(from Simple Topology)

<<Feature>>
TS_Theme
(from Simple Topology)

+element
+theme

Complex
Spatial Schema

- Simple Topology is used for parcels, administrative areas, etc. where unique coverage of the earth surface is required.

```plaintext
TS_SurfaceComponent
(from Simple Topology)

TS_CurveComponent
(from Simple Topology)

<<Feature>>
AL_Flurstueck

<<Feature>>
AL_BesondereFlurstuecksgrenze

parcel

boundary of a parcel with special properties
```
Spatial Schema

All curves and points within a LinientHEMA (line theme) belong to the same GM_COMPLEX. Multiple objects share a single GM_Object otherwise the RF-objects behave like AU-objects. Surfaces are not part of the complex.
Spatial Schema

<<Feature>>
AA_REO
(from AAA - Basisklassen)

<<Feature>>
AU_Punktobjekt
upposition : AA_Punktgeometrie

<<Feature>>
AU_KontinuierlichesLinienobjekt
ulplication : AA_Liniengeometrie

<<Feature>>
AU_Flaechenobjekt
upposition : AA_Flaechengeometrie

<<Feature>>
AU_Linienobjekt
ulposition : GM_MultiCurve

<<Union>>
AU_Geometrieobjekt
AU_Punktobjekt
AU_Linienobjekt
AU_KontinuierlichesLinienobjekt
AU_Flaechenobjekt

<<Union>>
AA_Punktgeometrie
GM_Point
GM_MultiPoint

<<Union>>
AA_Liniengeometrie
GM_Curve
GM_CompositeCurve

<<Union>>
AA_Flaechengeometrie
GM_PolyhedralSurface
GM_CompositeSurface
GM_MultiSurface

2001-03-07
Workshop "Standards in action"
Spatial Schema

Example for independent spatial attributes:

Both “fence” and “path” are represented by continuous curves. Their geometry is only determined by the spatial extent of the feature. It is independent of all other features.
Spatial Schema

```
AP_GPO
- SN : Integer
- DPL : Integer
- DPF : Integer
- drehwinkel [0..1] : Real = 0
```

```
<<Feature>>
AP_PPO

<<Feature>>
AP_TPO
- SI [0..1] : CharacterString
- fontName : CharacterString
- fontSperrung : Real
- fontGroesse : Real
- fontFarbe : AP_FontFarbe = schwarz
- fontNeigung : AP_FontNeigung = senkrecht
- fontAusrichtung : AP_FontAusrichtung = linksbündig

<<Feature>>
AP_LTO

<<Feature>>
AP_LPO

<<Feature>>
AP_FPO

<<Feature>>
AU_Punktobjekt
(from AU_unabhaengige Geometrie)

<<Feature>>
AU_Linienobjekt
(from AU_unabhaengige Geometrie)

<<Feature>>
AU_Flaechenobjekt
(from AU_unabhaengige Geometrie)
```

2001-03-07 Workshop "Standards in action" 17
Temporal Schema

- ISO 19103 Conceptual schema language
- ISO 19107 Spatial schema
- ISO 19108 Temporal schema
- ISO 19109 Rules for application schema
- ISO 19110 Feature cataloguing methodology
- ISO 19112 Spatial referencing by geographic identifiers
- ISO 19113 Quality principles
- ISO 19115 Metadata
- ISO 19117 Portrayal
- ISO 19118 Encoding
Temporal Schema

• ALKIS information shall be retrievable for any point in time ⇒ ALKIS features are time dependent.
• However, the Temporal Schema has not been used. The “tools” offered by ISO 19108/19109 were evaluated, but it has been decided not to use them for technical reasons.
• As a result, temporal aspects have been modelled on the application schema level.
Spatial referencing by geographic identifiers

• ISO 19103 Conceptual schema language
• ISO 19107 Spatial schema
• ISO 19108 Temporal schema
• ISO 19109 Rules for application schema
• ISO 19110 Feature cataloguing methodology
• ISO 19112 Spatial referencing by geographic identifiers
• ISO 19113 Quality principles
• ISO 19115 Metadata
• ISO 19117 Portrayal
• ISO 19118 Encoding
Spatial referencing by geographic identifiers

- Gazetteers will be defined as ALKIS products.

This will include Gazetteers, e.g. for
- street addresses,
- parcel names, and
- the administrative structure
Quality and Metadata

- ISO 19103 Conceptual schema language
- ISO 19107 Spatial schema
- ISO 19108 Temporal schema
- ISO 19109 Rules for application schema
- ISO 19110 Feature cataloguing methodology
- ISO 19112 Spatial referencing by geographic identifiers
- ISO 19113 Quality principles
- ISO 19115 Metadata
- ISO 19117 Portrayal
- ISO 19118 Encoding
Quality and Metadata

• Work on metadata is still in progress in Germany. It will be based on 19115.
• ISO 19115 has been applied so far only on the instance level as specified by ISO 19109, Rules for Application Schema (which we found difficult to understand and handle – especially due to major changes in these drafts during the ALKIS-ATKIS application schema development).
Quality and Metadata

Metadata / quality information on the instance level.
Portrayal

- ISO 19103 Conceptual schema language
- ISO 19107 Spatial schema
- ISO 19108 Temporal schema
- ISO 19109 Rules for application schema
- ISO 19110 Feature cataloguing methodology
- ISO 19112 Spatial referencing by geographic identifiers
- ISO 19113 Quality principles
- ISO 19115 Metadata
- ISO 19117 Portrayal
- ISO 19118 Encoding
Portrayal

- Portrayal has not been used so far for ALKIS-ATKIS. The main reasons are:
 - In general, it will not be possible to exchange an ISO 19117 Portrayal Catalogue from application A to application B and get a proper visualisation of a dataset in application B automatically (dependency on external functions, no common language).
 - The current draft contains several inconsistencies between the UML diagrams and the written text.
- Therefore the use of a portrayal catalogue in its current form is limited and no ressources have been put so far into describing it according to ISO 19117.
Encoding

- ISO 19103 Conceptual schema language
- ISO 19107 Spatial schema
- ISO 19108 Temporal schema
- ISO 19109 Rules for application schema
- ISO 19110 Feature cataloguing methodology
- ISO 19112 Spatial referencing by geographic identifiers
- ISO 19113 Quality principles
- ISO 19115 Metadata
- ISO 19117 Portrayal
- ISO 19118 Encoding
Encoding

- Encoded spatial data: this is the level where two ALKIS-ATKIS applications must be interoperable ⇒ Encoding is of major importance for ALKIS-ATKIS.

- The XML Schema definitions ("NAS", standards-based data exchange interface) will be automatically derived from the Rational Rose UML Application Schema.
Encoding

- Potential Risks:
 - We urgently need a stable foundation for the XML Schema definition. The Encoding DIS was expected for November 2000 and is still delayed.
 - Currently there are no standardised XML Schema definitions available for all the ISO 19100 schemas. We see a need for that, otherwise it is possible that different implementors will use different XML Schema definitions for the same ISO 19100 schema.
 - We are very concerned by the unrelated developments of ISO/TC 211 and OGC (GML) in that area.
Conclusion

• In addition to the expected benefits mentioned in the beginning, applying the ISO standards
 – avoided special ALKIS-ATKIS solutions in core areas and allowed to focus on the application domain,
 – provided a better understanding of the complex ALKIS-ATKIS application domain,
 – introduced a new way to manage the ALKIS-ATKIS standard. (The predecessor standards were modelled only in text documents. Using a CASE tool with computer processable results and deriving all other “modelling products” from it provides for a higher consistency and is helpful for implementors).
Conclusion

• The ALKIS-ATKIS application schema shall be finished by June 2001. This depends on the progress within ISO/TC 211:
 – Stable status of core ISO 19100 standards is required, especially the Encoding standard ISO 19118.
 – Availability of a stable, harmonised UML model and the corresponding XML Schema definitions of the ISO 19100 core schemas.

• ISO standards will only become true standards, if they will be standard components of GIS software. Therefore, a close cooperation of ISO/TC 211 and OGC is very important.
Thank you very much for your attention !